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ANALYTICAL SOLUTIONS FOR PEELING USING
BEAM-ON-FOUNDATION MODEL AND COHESIVE ZONE

Raymond H. Plaut
Jennifer L. Ritchie
Center for Adhesive and Sealant Science, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia, USA

When fibrillation occurs during peeling, the normal stress in the adhesive may
gradually reduce to zero at the peel front. The shear stress also reduces to zero.
Classical beam-spring (or beam-on-elastic-foundation) models do not yield solu-
tions that have these properties. With the use of a beam-on-foundation model com-
bined with a cohesive zone in the neighborhood of the peel front, these properties
can be satisfied. In order to obtain analytical solutions, peel tests are considered
in which the backing has a small slope and is linearly elastic in the adhered re-
gion, and the traction law is assumed to be piecewise linear. Cases are considered
with only normal stresses in the adhesive (mode I), only shear stresses (mode II),
and both stresses coupled (mixed-mode behavior). Analytical solutions are
obtained for displacements of the backing, forces in the backing, and stresses
between the adhesive and the backing.

Keywords: Cohesive zone models; Elastic peel arm; Elastic�plastic foundation; Piece-
wise�linear models; Peel test

INTRODUCTION

In a standard peel test, a tape consisting of a backing and an adhesive
is peeled from a flat rigid surface. The shear stress in the adhesive
must reduce to zero at the peel front. In addition, if fibrillation occurs
in the neighborhood of the peel front, the normal force in the adhesive
also may gradually reduce to zero at the peel front, as shown by
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experimental results [1]. A classical formulation of the peel test
assumes that the backing is an elastic beam and that the adhesive acts
as an elastic foundation (i.e., as a distribution of normal and shear
springs). If the slope of the attached tape is small, the formulation is
often reduced to uncoupled linear differential equations for the normal
and shear stresses, and analytical solutions can be obtained [2].

In the analysis of lap joints, Wang et al. [3] superposed an elastic
foundation solution with another function so that the shear stress at
the end of the adhesive is reduced to zero. Continuum models for lap
joints that use the zero-shear-stress boundary condition include those
in Allman [4] Chen and Cheng [5], and Adams and Mallick [6]. Yang
et al. [7, 8] applied a ‘‘trapezoidal’’ cohesive zone model to examine
normal and shear stresses in the fracture of adhesively bonded joints,
and mixed-mode cases were discussed by Thouless and Yang [9].

For the analysis of peel tests, such trapezoidal cohesive zone models
were utilized by Wei and Hutchinson [10] and Yang et al. [11]. The
traction�separation relationship was assumed to be piecewise linear,
with a positive slope at first (elastic behavior), then a constant slope
(perfectly plastic behavior), and then a negative slope (called ‘‘damage’’
in Williams and Hadavinia [12]) till the stress decreased to zero. This
type of behavior approximates that which is sometimes seen in experi-
mental results involving fibrillation in probe tests [13, 14] as well as
peel tests [1]. Some analytical solutions related to peeling and a cohes-
ive zone were presented in Yamada [15] and recently in Williams and
Hadavinia [12] and Georgiou et al. [16]. Shear of the adhesive was not
considered, and the traction law for the normal stress included one or
two linear sections. The analyses of Williams and Hadavinia [12],
Yamada [15], and Georgiou et al. [16] are generalized here. (Another
study involving peeling and a cohesive zone is Rahulkumar et al.
[17], and Cotterell et al. [18] have organized a ‘‘round robin’’ to com-
pare results of inelastic beam models and cohesive zone finite element
analyses.)

In this article the basic formulation is described in the next section,
and the trapezoidal traction law used in Yang et al. [7, 8, 11], Yang and
Thouless [9], and Wei and Hutchinson [10] is applied for the case of
negligible shear stress in the adhesive (mode I) in the following sec-
tion. In the next section, this traction law is used for the case of shear
with negligible normal stress (mode II). A mixed-mode example is ana-
lyzed in the coupled behavior section, in which the normal stress as a
function of normal displacement has two linear sections (positive slope
and then constant slope), and the shear stress as a function of tangen-
tial displacement has two linear sections (positive slope and then
negative slope). Concluding remarks are presented in the last section.
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FORMULATION

Consider Figure 1, in which a tape is peeled from a rigid substrate.
The backing that is adhered to the substrate is represented as a
semi-infinite, linearly elastic uniform beam. The adhesive is assumed
to be linearly elastic for ~xx < 0 (shaded region) and to be governed by
constant or linearly decreasing traction laws from ~xx ¼ 0 to the peel
front (dotted region). The free part of the tape to the right of the peel
front is replaced by an equivalent resultant bending moment, ~MMo, and
an equivalent resultant force with horizontal component, ~FFx, and ver-
tical component, ~FFy, positive as shown. To relate these quantities at
the peel front to the applied force or displacement at the free end of
the tape, an elastica analysis is sometimes used [19�22]. It allows
for large rotations and assumes that the tape is linearly elastic, that
its bending moment is proportional to its curvature, and that it is in-
extensible (although extensibility can be included [23]). The nonlinear
equations can be solved numerically in terms of integrals or with the
use of a shooting method [24].

The backing has thickness hb, width w, cross-sectional area
Ab ¼ hbw, modulus of elasticity Eb, and moment of inertia
Ib ¼ hb

3w=12. The adhesive has initial thickness ha. When the ad-
hesive is linearly elastic, it has modulus of elasticity Ea and shear
modulus Ga, and the foundation stiffness k is defined as k ¼ Eaw=ha

[25]. The vertical displacement of the centerline of the backing is
denoted ~yyð~xxÞ, positive if upward. It is assumed that the applied forces
are such that ~yy > �ha.

FIGURE 1 Illustration of tape backing and adhesive.
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The slope of the backing is assumed to be small. A free-body dia-
gram of an element of length d~xx is depicted in Figure 2. At the center-
line, the resultant moment is ~MM and the resultant horizontal (‘‘axial’’)
and vertical force components are ~PP and ~QQ, respectively. At the inter-
face between the backing and the adhesive, the vertical (‘‘normal’’)
stress is ~SS and the horizontal (‘‘shear’’) stress is ~ss. Equilibrium of
moments and force components leads to the following equations:

~MM0 ¼ ~PP~yy0 � ~QQþ 1

2
whb~ss; ð1Þ

~PP0 ¼ w~ss; ð2Þ
~QQ0 ¼ ~SS ð3Þ

The moment�curvature relationship is given by

~MM ¼ EbIb~yy
00: ð4Þ

MODE I

In this section it is assumed that the horizontal forces are negligible,
and ~FFx, ~PP, and ~ss are set equal to zero. From Equations (1), (3), and
(4) it follows that

EbIb~yy
0000 þ ~SS ¼ 0: ð5Þ

As shown in Figure 3a, ~yy is denoted by ~yy1, ~yy2, and ~yy3, respectively,
for ~xx < 0 (linearly elastic adhesive), 0 < ~xx < ~rr (perfectly plastic

FIGURE 2 Free-body diagram of section of backing with length d~xx.
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adhesive), and ~rr < ~xx < ~qq (damage region). The values of the vertical
displacement at ~xx ¼ 0, ~rr, and ~qq are denoted ~cc, ~zz, and ~dd, respectively.
The normal stress ~SS as a function of the vertical displacement is
depicted in Figure 3b and is given by

~SSð~yyÞ ¼
k~yy1 if ~xx < 0;
k~cc if 0 < ~xx < ~rr;
k~ccð~dd� ~yy3Þ=ð~dd� ~zzÞ if ~rr < ~xx < ~qq

8<
: ð6Þ

The analysis in this section is carried out in terms of the parameter
k and the nondimensional quantities defined as follows:

k4 ¼ k

4EbIb
; x ¼ k~xx; y ¼ k~yy; r ¼ k~rr; q ¼ k~qq; c ¼ k~cc;

z ¼ k~zz; d ¼ k~dd; S ¼
~SS

4k3EbIb
; Fy ¼

~FFy

k2EbIb
;

Mo ¼
~MMo

kEbIb
; c4 ¼ 4~cc

~dd� ~zz:

ð7Þ

With the use of Equations (5)�(7), the general solutions for the
displacement functions have the forms

y1 xð Þ ¼ ex a1 cos xþ a2 sin xð Þ; ð8Þ

y2 xð Þ ¼ a3 þ a4xþ a5x
2 þ a6x

3 � c

6
x4; ð9Þ

y3 xð Þ ¼ dþ a7 cos cxþ a8 sin cxþ a9 cosh cxþ a10 sinh cx; ð10Þ

where aj are constant coefficients. The equation for y1 only has two un-
known coefficients due to the finiteness conditions as x !�1. There-
fore, the boundary value problem involves 10 unknown coefficients,

FIGURE 3 Mode I: (a) vertical displacement of backing, (b) normal stress as
function of vertical displacement.
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three displacement values (c, z, and d), and two locations (r and q).
Thirteen conditions are available: y1 ¼ y2 ¼ c at x ¼ 0; y2 ¼ y3 ¼ z at
x ¼ r; y3 ¼ d at x ¼ q; continuity of y0, y00, and y000 at x ¼ 0 and x ¼ r;
and at x ¼ q, y3

00 ¼ Mo and y3
000 ¼�Fy.

The displacement parameters z and d are written as z ¼ e1c and
d ¼ e2c, where 1 < e1 < e2. For given values of Fy, Mo, e1, and e2, the
13 conditions are manipulated and reduced to three coupled transcen-
dental equations in the parameters c, r, and q. These equations are
solved numerically using the subroutine FindRoot in Mathematica
[26]. For the case Fy ¼ 2, Mo ¼ 1, e1 ¼ 1.25, and e2 ¼ 1.75 (so
that z ¼ 1.46 and d ¼ 2.05), one obtains c ¼ 1.17, r ¼ 0.141 (the non-
dimensional length of the plastic region), and q ¼ 0.390 (so the non-
dimensional length of the damage region is 0.249). The displacement
is plotted in Figure 4 and the normal stress in the adhesive is shown
in Figure 5. The displacement has the usual form for x < 0 [1] and con-
tinues smoothly upward in the cohesive zone. Compression occurs be-
tween approximately x ¼ �4 and x ¼ �1. In Figure 5, S ¼ y for x < 0,
S ¼ c for 0 < x < r, and S(x) decreases almost linearly from c to 0 as x
increases from r to q. This is an approximation to the form of the stress
determined experimentally in Kaelble and Ho [1], where the slope of
the stress did not exhibit discontinuities.

FIGURE 4 Vertical displacement for mode I example.
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For this example, in order to compare the displacement in Figure 4
with that for the case with no cohesive zone, Equation (8) is applied for
the entire region x < 0.390. Application of the boundary conditions
y00(0.390) ¼ 1 and y000(0.390) ¼ �2 leads to a1 ¼ 0.811 and a2 ¼ 0.699.
The shape is similar to that in Figure 4, but the displacements at
x ¼ 0, 0.141, and 0.390 for this model are 0.811, 1.04, and 1.50,
respectively, which are smaller than the values 1.17, 1.46, and 2.05
when the cohesive zone is included.

MODE II

Now it is assumed that ~FFy, ~MMo, ~QQ , ~MM, and ~SS are negligible, and they
are set equal to zero, so the focus is on the shear stress, ~ss, caused by
the applied horizontal force, ~FFx. The horizontal displacement of a bot-
tom fiber of the backing is denoted ~uuð~xxÞ, positive in the ~xx direction. The
constitutive law for extension of the backing is assumed to be

~PP ¼ whbEb~uu
0: ð11Þ

Consider Figure 6. The cohesive zone for shear assumed here is simi-
lar to what it was for tension in the preceding section, and subscripts
1, 2, and 3 denote quantities in the elastic, plastic, and damage

FIGURE 5 Normal stress for mode I example.
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regions, respectively. The values of ~uuð~xxÞ at ~xx ¼ 0, ~rr, and ~qq are denoted
~gg, ~DD, and ~qq, respectively.

The parameters a and s are defined by the following relations:

a2 ¼ Ga

hahbEb
; s2 ¼ ~gg

ð~qq� ~DDÞ
: ð12Þ

Based on Figure 6 and Equations (2) and (11), for the elastic region
(~xx < 0) the shear stress, ~ss1, at the bottom of the backing and the axial
force, ~PP1, satisfy the equations

~ss1 ¼ Ga
~uu1

ha
; ~PP

00
1 � a2~PP1 ¼ 0: ð13Þ

In the plastic region (0 < ~xx < ~rr),

~ss2 ¼
Ga~gg
ha

; ~PP
0
2 ¼

Gaw~gg
ha

: ð14Þ

Finally, in the damage region (~rr < ~xx < ~qq),

~ss3 ¼ Ga~ggð~qq� ~uu3Þ
hað~qq� ~DDÞ

; ~PP
00
2 þ s2a2~PP3 ¼ 0: ð15Þ

The following nondimensional quantities are defined for this mode-II
analysis:

�xx ¼ a~xx; �rr ¼ a~rr; �qq ¼ a~qq; u ¼ ~uu

~gg
; D ¼

~DD
~gg
; q ¼ ~qq

~gg
;

�ss ¼ ha~ss
Ga~gg

; �PP ¼ aha
~PP

Ga~ggw
; �FFx ¼

aha
~FFx

Ga~ggw:

ð16Þ

It is noted that the nondimensional quantities �xx, �rr, and �qq are not the
same as x, y, and r used in the preceding section.

FIGURE 6 Mode II: (a) horizontal displacement at bottom of backing, (b)
shear stress as function of horizontal displacement.
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From Equations (13)�(15) in nondimensional form, general solu-
tions for �PP1, �PP2, and �PP3 can be written, and general solutions for �ssj
and uj can be obtained from �ssj ¼ �PP0

j and uj0 ¼ �PPj ( j ¼ 1,2,3) based on
Equations (2) and (11). The unknown coefficients can be determined
with the use of the following conditions: finiteness as �xx ! �1;
u1 ¼ u2 ¼ 1 at �xx ¼ 0; u2 ¼ u3 ¼ D at �xx ¼ �rr; u3 ¼ q at �xx ¼ �qq; continuity
of u, �ss, and �PP at �xx ¼ 0 and �xx ¼ �rr; and, at �xx ¼ �qq, �ss ¼ 0 and �PP ¼ �FFx.

The solution for ujð�xxÞ; j ¼ 1; 2; 3, is

u1ð�xxÞ ¼ e�xx; u2ð�xxÞ ¼ 1þ �xxþ 1

2
�xx2;

u3ð�xxÞ ¼ q� ð1þ �rrÞ
s

sin½sð�rr� �xxÞ� � 1

s2
cos½sð�rr� �xxÞ�: ð17Þ

Then �PPj ¼ uj
0 and �ssj ¼ uj

00. From the required conditions, it is found
that the following equations must be satisfied:

�FFx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ D� 1

p
; �rr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D� 1

p
� 1;

�qq ¼ �rrþ 1

s
Arc tan

1

sð1þ �rrÞ

� �
: ð18Þ

One can set D and q, and obtain �FFx, �rr, and �qq from Equation (18). As a
numerical example, suppose that D ¼ 1.25 and q ¼ 1.75; then
�rr ¼ 0:225, �qq ¼ 0:595, and �FFx ¼

ffiffiffi
2

p
. The corresponding functions

uð�xxÞ, �PPð�xxÞ, and �ssð�xxÞ are plotted in Figures 7, 8, and 9, respectively.
The curve of the tensile axial force �PPð�xxÞ is smooth and has zero slope
at the peel front. The shear stress �ssð�xxÞ has the standard exponential
solution for �xx < 0, is constant for 0 < �xx < �rr, and is almost linear from
unity to zero as �xx increases from �rr to �qq.

The results for this example can be compared with the classical case
without a cohesive zone. In that case, the first equation in Equation
(17) governs for �xx < 0:595, and u(0.225) is 1.25 again, but u(0.595) is
1.81, which is higher than the value 1.75 with the cohesive zone.

COUPLED BEHAVIOR (MIXED MODES)

Finally, consider the case in which neither normal nor shear stresses
are negligible. Equations (1)�(4) are applicable. If Equation (1) is
differentiated and Equations (3) and (4) are utilized, one obtains

EbIb~yy
0000 þ ~SS� 1

2
whb~ss

0 ¼ ð~PP~yy0Þ0: ð19Þ

The term on the right-hand side of Equation (19) is nonlinear when ~PP
and ~yy are variables, and it is neglected. This term was not included in
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FIGURE 7 Horizontal displacement for mode II example.

FIGURE 8 Axial force for mode II example.
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the derivations in Goland and Reissner [27], Sneddon [28], and Big-
wood and Crocombe [29], and in Cornell [30] it was dropped since
it provides a ‘‘second-order effect’’ when the displacements are
small. The magnitude of this term will be examined later for an
example.

Due to bending and extension of the centerline of the backing, the
horizontal displacement, ~uuð~xxÞ, of a bottom fiber of the backing satisfies
[27,28]

~uu0 ¼ 1

2
hb~yy

00 þ
~PP

whbEb
: ð20Þ

Consider the traction laws shown in Figure 10. A similar law for the
normal stress was considered in Williams and Hadavinia [12] and
Yamada [15]. Subscript 1 denotes quantities for ~xx < 0 and subscript
2 for 0 < ~xx < ~rr in which the normal stress is constant and the shear
stress decreases linearly to zero as a function of the horizontal dis-
placement, ~uu, so that the required shear stress condition at the peel
front is satisfied. The normal stress, ~SS, is given by the first two expres-
sions in Equation (6), the shear stress, ~ss1, is given in Equation (13),
and the shear stress, ~ss2, is

FIGURE 9 Shear stress for mode II example.
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~ss2 ¼
Ga~gg ~qq� ~uu2ð Þ
ha ~qq� ~ggð Þ : ð21Þ

The justification for different traction�separation relationships for
normal and shear stresses is discussed in Thouless and Yang [9].

Using these stresses along with Equation (2), Equation (19) without
its right-hand side, and Equation (20), the governing equations for
~xx < 0 can be written in terms of ~yy1ð~xxÞ and ~PP1ð~xxÞ as

EbIb~yy
0000
1 � k~yy1 �

1

2
hb

~PP00
1 ¼ 0; ð22Þ

1

2
hb~yy

00
1 �

ha

wGa

~PP
00
1 þ

~PP1

whbEb
¼ 0: ð23Þ

These are special cases of equations used in Bigwood and Crocombe
[30]. For 0 < ~xx < ~rr, the governing equations in terms of ~yy2ð~xxÞ and
~PP2ð~xxÞ are

FIGURE 10 Coupled modes: (a) vertical displacement of backing; (b) normal
stress as function of vertical displacement; (c) horizontal displacement at
bottom of backing; (d) shear stress as function of horizontal displacement.
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EbIb~yy
0000
2 � 1

2
hb

~PP
00
2 ¼ �k~cc; ð24Þ

1

2
hb~yy

00
2 þ

ha ~qq� ~ggð Þ
wGa~gg

~PP
00
2 þ

~PP2

whbEb
¼ 0: ð25Þ

The analysis is carried out in nondimensional terms. The quantities
k, x, y, r, c, z, S, Fy, and Mo are defined in Equation (7), and new vari-
ables used here are

s ¼ whb~ss

2k2EbIb
; P ¼ hb

~PP

2kEbIb
; Fx ¼

hb
~FFx

2kEbIb
: ð26Þ

Equations (22)�(25) then take the following form:

y00001 þ 4y1 � P00
1 ¼ 0; ð27Þ

3n2y001 � P00
1 þ n2P1 ¼ 0; ð28Þ

y00002 � P00
2 ¼ �4c; ð29Þ

3X2y002 þ 4P00
2 þ X2P2 ¼ 0; ð30Þ

where

n2 ¼ a2

k2
; X2 ¼ 4n2~gg

~qq� ~ggð Þ ; ð31Þ

and a is defined in Equation (12).
For x < 0, the general solution of Equations (27) and (28) has the

form

y1ðxÞ ¼ Re
X6
j¼1

aje
Kjx

( )
; P1ðxÞ ¼ Re

X6
j¼1

aj K2
j þ

4

K2
j

 !
eKjx

( )
; ð32Þ

where aj are constants and Kj are the roots of the following cubic equa-
tion in K2:

K6 � 4n2K4 þ 4K2 � 4n2 ¼ 0: ð33Þ

Some of the aj and Kj are complex. For 0 < x < r, the general solution
of Equations (29) and (30) can be written as

y2ðxÞ ¼ b1 þ b2xþ b3x
2 þ b4x

3 � cx4

24
þ b5 sinXxþ b6 cosXx;

P2ðxÞ ¼ �6b3 � 18b4xþ 3cx2

2
� 12c

X2
� X2b5 sinXx� X2b6 cosXx;

ð34Þ

where bj are constants.
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In order to determine the unknown coefficients, the finiteness con-
ditions as x!�1 are applied, as well as conditions at x ¼ 0 and r.
At x ¼ 0, y1 ¼ y2 ¼ c, and the quantities y0, y00, y000, P, and P0 are con-
tinuous. At x ¼ r, the boundary conditions are P2 ¼ Fx, y2

00 ¼ Mo,
and y2

000 ¼�Fy.
For a numerical example, let n2 ¼ 0.001, r ¼ 0.5, Fx ¼ 0.2, Fy ¼ 0.4,

and Mo ¼ 0. The resulting plots for the vertical displacement y(x), nor-
mal stress S(x), axial force P(x) in the backing, and shear stress s(x) at
the bottom of the backing are presented in Figures 11�14, respect-
ively. The horizontal scales in Figures 13 and 14 are much different
from those in Figures 11 and 12. At x ¼ 0, y ¼ S ¼ 0.129, P ¼ 0.198,
and s ¼ 0.00684. At the peel front x ¼ 0.5, naturally S is the same as
at x ¼ 0, and y ¼ 0.239, P ¼ Fx ¼ 0.2, and s ¼ 0.

If this example were analyzed without a cohesive zone, Equations
(27) and (28) would be applied for x < r and the solution would satisfy
the boundary conditions at x ¼ r. The resulting deflection can be writ-
ten as

yðxÞ ¼ 4:91� 10�5e0:0316x þ e�xð0:107 cos xþ 0:200 sin xÞ: ð35Þ

At x ¼ 0 for this solution, y ¼ S ¼ 0.107, P ¼ 0.197, and s ¼ 0.00670,
and at the peel front x ¼ 0.5, y ¼ S ¼ 0.200, P ¼ 0.2, and s ¼ 0.00691.

FIGURE 11 Vertical displacement for mixed-mode example.
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FIGURE 13 Axial force for mixed-mode example.

FIGURE 12 Normal stress for mixed-mode example.
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Finally, it is desirable to get an idea of the size of the term on the
right-hand side of Equation (19), which was neglected in order to ob-
tain linear equations with analytical solutions. In the nondimensional
Equations (27) and (29), it would add the expression 2(Pjyj

0)0=(khb) to
the right-hand sides ( j ¼ 1,2, respectively), which can be compared
with the other terms. In the numerical example, the quantities y0000,
y, P00, and (Py0)0 have the respective values �0.52, 0.13, 0.0006, and
0.03 at x ¼ 0, for instance. Whether or not the neglected term is small
compared with the other three terms depends on the nondimensional
product khb, which is equal to [3hbEa=(haEb)]

1=4. It follows that the
term will be negligible if the product of hb=ha and Ea=Eb is sufficiently
large. If it is not, a nonlinear analysis would be needed.

CONCLUDING REMARKS

Several objectives have motivated this study. One has been to obtain
solutions that satisfy the condition of zero shear stress at the peel
front, as well as solutions in which the normal stress in the adhesive
reduces to zero at the peel front (to model the behavior when fibril-
lation causes this to occur). Also, it was desired to derive analytical
solutions for the displacements and stresses, for which the coefficients

FIGURE 14 Shear stress for mixed-mode example.
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could be computed using boundary and transition conditions. Hence,
formulations leading to piecewise-linear differential equations with
constant coefficients were considered. This led to the model of the tape
backing in the adhered region as a linearly elastic beam with small
slopes, and traction�separation laws for the normal and shear stres-
ses consisting of linear sections. The free part of the tape, beyond
the peel front, does not need to be linearly elastic or to have small
slopes, and it was represented by equivalent force and bending mo-
ment resultants at the peel front.

Three formulations were presented. In the first, the shear stress
was negligible (mode I). As an example, a trapezoidal cohesive zone
was assumed for the normal stress in the adhesive. In the second for-
mulation, the normal stress was negligible (mode II), and a similar co-
hesive zone was assumed for the shear stress at the interface of the
backing and the adhesive (this model may be more useful for lap joints
than for peel tests). Finally, a mixed-mode model was considered, in-
volving coupled normal and shear stresses. In the example, the normal
stress was perfectly plastic near the peel front, while the shear stress
decreased to zero.

Due to the kinks in the traction-separation laws, the resulting plots
of normal and shear stress versus position along the tape demonstrate
unrealistic kinks (although the relationships for displacements and
axial force in the backing are smooth). However, the results approxi-
mate those that would be obtained if similar traction laws without
sharp corners would be assumed.

For the mixed-mode model, it was assumed that the shear stress
was zero at the peel front. A failure criterion based on the fracture en-
ergy could be considered, with the shear stress not reaching zero. The
components GI and GII of the fracture energy are defined by

GI ¼
Z ~yy

0

Sð~yyÞd~yy; GII ¼
Z ~uu

0

~ssð~uuÞd~uu; ð36Þ

and the failure criterion can be chosen as [9, 31]

GI

CIo
þ GII

CIIo
¼ 1; ð37Þ

where CIo and CIIo are the total areas under the mode I and mode II
traction�separation laws, respectively. For the traction laws in Figure
10, Equation (36) becomes

2y� c

2z� c
þ 2qu� q� u2

qðq� 1Þ ¼ 1 ð38Þ
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where the nondimensional quantities are defined in Equations (7) and
(16). As the applied forces are increased, peeling is assumed to occur
when the displacements y and u satisfy Equation (37).

In the global context of the displacements and stresses, the local
behavior near the peel front may not cause significant changes. How-
ever, in some cases it is of interest, and a cohesive zone can be an ef-
fective means to model such behavior. Analytical solutions, even if
based on some restrictive assumptions, can be useful in uncovering
some of the features of the local displacements and stresses, and in
some cases it is important to include the mixed-mode coupled behavior
of the normal and shear stresses.
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